摘要:With the wide application, the performance of unimodal biometrics systems has to contend with a variety of problems such as background noise, signal noise and distortion, and environment or device variations. Therefore, multimodal biometric systems are proposed to solve the above mentioned problems. This paper proposed a novel multimodal biometric system using face-iris fusion feature. Face feature and iris feature are first extracted respectively and fused in feature-level. However, existing feature level schemes such as sum rule and weighted sum rule are inefficient in complicated condition. In this paper, we adopt an efficient feature-level fusion scheme for iris and face in series. The algorithm normalizes the original features of iris and face using z-score model to eliminate the unbalance in the order of magnitude and the distribution between two different kinds of feature vectors, and then connect the normalized feature vectors in serial rule. The proposed algorithm is tested using CASIA iris database and two face databases (ORL database and Yale database). Experimental results show the effectiveness of the proposed algorithm.