摘要:Soliton equations are infinite-dimensional integrable systems described by nonlinear evolution equations. As one of the soliton equations, long wave equation takes on profound significance of theory and reality. By using the method of nonlinearization, the relation between long wave equation and second-order eigenvalue problem is generated. Based on the nonlinearized Lax pairs, Euler-Lagrange function and Legendre transformations, a reasonable Jacobi-Ostrogradsky coordinate system is obtained. Moreover, by means of the Bargmann constrained condition between the potential function and the eigenfunction, the Lax pairs is equivalent to matrix spectral problem. Furthermore, the involutive representations of the solutions for long wave equation are generated.