首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Energy-efficient Task Scheduling Model based on MapReduce for Cloud Computing using Genetic Algorithm
  • 本地全文:下载
  • 作者:Wang, Xiaoli ; Wang, Yuping ; Zhu, Hai
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2012
  • 卷号:7
  • 期号:12
  • 页码:2962-2970
  • DOI:10.4304/jcp.7.12.2962-2970
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:High energy consumption of data centers hasbecome a great obstacle to the development of cloud computing.This paper mainly focuses on how to improve theenergy efficiency of servers in a data center by appropriatetask scheduling strategies. Based on MapReduce, Google’smassive data processing framework, a new energy-efficienttask scheduling model is proposed in this paper. To solvethis model, we put forward an effective genetic algorithmwith practical encoding and decoding methods and speciallydesigned genetic operators. Meanwhile, with a view toaccelerating this algorithm’s convergent speed as well asenhancing its searching ability, a local search operator isintroduced. Finally, the experiments show that the proposedalgorithm is effective and efficient.
  • 关键词:Energy-efficient task scheduling;Cloud computing;MapReduce;Genetic algorithm
国家哲学社会科学文献中心版权所有