首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Foreground Object Detecting Algorithm based on Mixture of Gaussian and Kalman Filter in Video Surveillance
  • 本地全文:下载
  • 作者:Wang, Xun ; Sun, Jie ; Peng, Hao-Yu
  • 期刊名称:Journal of Computers
  • 印刷版ISSN:1796-203X
  • 出版年度:2013
  • 卷号:8
  • 期号:3
  • 页码:693-700
  • DOI:10.4304/jcp.8.3.693-700
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:This paper presents a novel MoG based method for foreground detection and segmentation in video surveillance. Normal MoG is different to deal with the foreground objects that stay in the scene for a long time and segment difficult foreground objects from one blob. We improve MoG by adopting posterior feedback information of Kalman filter tracking, to robustly modeling the background and to perfect the foreground segmentation result. Experiments and comparisons show that our method is robust and accurate in video surveillance.
  • 关键词:Video surveillance;Mixture of Gaussian;posterior information;Kalman filter tracking.
国家哲学社会科学文献中心版权所有