首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Video Image Object Tracking Algorithm based on Improved Principal Component Analysis
  • 本地全文:下载
  • 作者:Wang, Liping
  • 期刊名称:Journal of Multimedia
  • 印刷版ISSN:1796-2048
  • 出版年度:2014
  • 卷号:9
  • 期号:5
  • 页码:722-728
  • DOI:10.4304/jmm.9.5.722-728
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Since the existing object tracking algorithms are very difficult to adapt the object appearance changes caused by illumination changes, large pose variations, and partial or full occlusions, an object tracking algorithm based on two-dimensional principal component analysis (2DPCA) and sparse-representation is proposed in this paper. The tracking algorithm adopts 2DPCA and sparse-representation to establish object appearance model. In order to reduce dimension of object template, incremental subspace updating algorithm is introduced to online update the object template, reduce the requirement of memory space and enhance the precision of object appearance description. Experimental results show the proposed algorithm is robust for image illumination variance and object partial occlusion.
  • 关键词:Object Tracking;Sparse-Representation;Incremental Learning;Subspace Updating Algorithm;Object Appearance Description
国家哲学社会科学文献中心版权所有