首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Improved Algorithm of Bayesian Text Categorization
  • 本地全文:下载
  • 作者:Dong, Tao ; Shang, Wenqian ; Zhu, Haibin
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2011
  • 卷号:6
  • 期号:9
  • 页码:1837-1843
  • DOI:10.4304/jsw.6.9.1837-1843
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Text categorization is a fundamental methodology of text mining and a hot topic of the research of data mining and web mining in recent years. It plays an important role in building traditional information retrieval, web indexing architecture, Web information retrieval, and so on. This paper presents an improved algorithm of text categorization that combines the feature weighting technique with Naïve Bayesian classifier. Experimental results show that using the improved Gini index algorithm to feature weight can improve the performance of Naïve Bayesian classifier effectively. This algorithm obtains good application in the sensitive information recognition system.
  • 关键词:text categorization;Gini index;feature weighting;Naïve Bayes
国家哲学社会科学文献中心版权所有