首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:The Load Forecasting Model Based on Bayes-GRNN
  • 本地全文:下载
  • 作者:Li, Yanmei ; Wang, Jingmin
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2012
  • 卷号:7
  • 期号:6
  • 页码:1273-1280
  • DOI:10.4304/jsw.7.6.1273-1280
  • 语种:English
  • 出版社:Academy Publisher
  • 摘要:Comparison with the classical BP neural network, the generalized regression neural network requires not periodic training process but a smoothing parameter. The model has steady and fast speed, and meanwhile, the connection weight of different neurons is not necessary to be adjusted in the training process. The paper establishes the index system of GRNN forecasting model, and then uses Bayes theory to reduce them, which will be inputting variables of GRNN model. The method is testified to get higher speed and accuracy by simulation of actual data and comparison to classical BP neural network.
  • 关键词:Bayes; load forecasting; generalized regression neural network
国家哲学社会科学文献中心版权所有