摘要:This paper proposes a novel k-nearest neighbor algorithm to predict soil moisture in maize field. In order to estimate soil moisture in maize field accurately without any destruction to root and soil, this paper uses biological characteristics of maize to estimate soil moisture, including plant height, leaf area, stem diameter, dry weight and fresh weight, all the values of which are non-negative. So a novel k-nearest neighbor based on I-divergence (ID_KNN) is proposed. ID_KNN uses I-divergence as the distance metric instead of Euclidean distance, which is more effective when the data is positive. The proposed method is tested on datasets in six growth stages of maize, and the experimental results show that ID_KNN is more effective in accuracy and macro F1 measure than traditional k-nearest neighbor algorithm.