首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira
  • 本地全文:下载
  • 作者:Hanna Koch ; Sebastian Lücker ; Mads Albertsen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:36
  • 页码:11371-11376
  • DOI:10.1073/pnas.1506533112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceNitrification, the sequential aerobic oxidation of ammonia via nitrite to nitrate, is a key process of the biogeochemical nitrogen cycle and catalyzed by two aerobic microbial guilds (nitrifiers): ammonia oxidizers and nitrite-oxidizing bacteria (NOB). NOB are generally considered as metabolically restricted and dependent on ammonia oxidizers. Here, we report that, surprisingly, key NOB of many ecosystems (Nitrospira) convert urea, an important ammonia source in nature, to ammonia and CO2. Thus, Nitrospira supply urease-negative ammonia oxidizers with ammonia and receive nitrite produced by ammonia oxidation in return, leading to a reciprocal feeding interaction of nitrifiers. Moreover, Nitrospira couple formate oxidation with nitrate reduction to remain active in anoxia. Accordingly, Nitrospira are unexpectedly flexible and contribute to nitrogen cycling beyond nitrite oxidation. Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers, suggests a wide distribution of this extended interaction between ammonia and nitrite oxidizers, which enables nitrite-oxidizing bacteria to indirectly use urea as a source of energy. A soluble formate dehydrogenase lends additional ecophysiological flexibility and allows N. moscoviensis to use formate, with or without concomitant nitrite oxidation, using oxygen, nitrate, or both compounds as terminal electron acceptors. Compared with Nitrospira defluvii from lineage I, N. moscoviensis shares the Nitrospira core metabolism but shows substantial genomic dissimilarity including genes for adaptations to elevated oxygen concentrations. Reciprocal feeding and metabolic versatility, including the participation in different nitrogen cycling processes, likely are key factors for the niche partitioning, the ubiquity, and the high diversity of Nitrospira in natural and engineered ecosystems.
  • 关键词:Nitrospira ; nitrification ; genome ; urease ; formate
国家哲学社会科学文献中心版权所有