首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change
  • 本地全文:下载
  • 作者:Chris A. Boulton ; Timothy M. Lenton
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2015
  • 卷号:112
  • 期号:37
  • 页码:11496-11501
  • DOI:10.1073/pnas.1501781112
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:SignificanceSea surface temperature (SST) variations in the North Pacific have triggered past abrupt changes in fisheries and other ecosystems. We have discovered that over the last century, fluctuations of North Pacific SSTs have become less frequent and longer-lived. This "reddening" behavior can also be seen in the dominant pattern of climate variability in the region, known as the Pacific Decadal Oscillation index. This fundamental change in climate variability has important implications for ecosystems in the region. It implies that over the last century, ecosystems have become prone to undergoing larger climate-triggered abrupt shifts. Hence our discovery of changing climate variability could have contributed to the large magnitude of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.
  • 关键词:regime shifts ; North Pacific ; marine ecosystems ; abrupt change ; climate change
国家哲学社会科学文献中心版权所有