The expression levels of CYP and uridine diphosphate-glucuronosyl transferase (UGT) are lower in hepatocellular carcinoma cell lines than in human primary hepatocytes. However, a functional liver cell (FLC)-4 cell line that has a greater capacity to secrete liver-specific proteins than other hepatocellular carcinoma cells has recently been established. A three-dimensional culture using Engelbreth–Holm–Swan (EHS) gel induces the secretion of liver-specific proteins via the induction of hepatocyte nuclear factor-4α (HNF-4α). The aim of this study was to evaluate the mRNA expression of the enzymes CYP and UGT in FLC-4 and HepG2 cells in monolayer and three-dimensional cultures using EHS gel. The mRNA levels of HNF-4α, albumin, pregnane X receptor (PXR), constitutive androstane receptor (CAR), CYPs (1A2, 2E1, 2C8, 2C9, 2C19, 2D6, and 3A4) and UGTs (1A1, 1A6, 1A9, and 2B7) were determined using real-time reverse transcription (RT) PCR. In a monolayer culture, the mRNA expression levels of HNF-4α, albumin, PXR, CAR, CYPs (2E1, 2C9, 2C19, 2D6, and 3A4) and UGTs (1A1, 1A6, and 1A9) were higher in FLC-4 cells than in HepG2 cells. In FLC-4 cells, the mRNA expression levels of HNF-4α, albumin, PXR, CAR, CYPs (2E1, 2C8, 2C19, and 3A4) and UGTs (1A1, 1A6, 1A9, and 2B7) significantly increased in three-dimensional culture. FLC-4 cells cultured in EHS gel showed significantly increased expression levels of CYPs and UGTs. The results of this study suggest that human hepatocellular carcinoma FLC-4 cells cultured in EHS gel show potential for use in studying in vitro drug metabolism.