Autophagy is involved in the activation of hepatic stellate cells (HSCs), which is the key process of liver fibrosis. We reasoned that chloroquine, based on its ability to inhibit autophagy, might exert beneficial effects in liver fibrosis. Liver fibrosis in rats was induced by carbon tetrachloride (CCl4). Rats were divided into three groups, a normal control group (N group), model group (M group), and chloroquine group (CQ group). Liver fibrosis in the rats was evaluated by hematoxyline–eosin (H&E) and Masson staining. The activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TB) were determined using an automated biochemistry analyzer. Total hepatic hydroxyproline levels were determined with a kit. The expressions of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) were detected by immunofluorescence staining, and the expressions of LC3-II and p62 were determined by Western blotting. Compared with N group, M group showed impaired liver function, liver fibrosis, increased hydroxyproline content, up-regulated expressions of α-SMA and TGF-β1, which have been reported to be pro-fibrogenic genes in vivo , and increased autophagy flux as indicated by the accumulation of LC3-II and degradation of p62. These changes were attenuated by chloroquine treatment. Chloroquine exerts beneficial effects in CCl4-induced liver fibrosis. The mechanism of action includes inhibition of autophagy pathways and inhibition of activation of HSCs.