Luteolin, a flavone found in some vegetables, has been reported to exhibit antioxidant, antiinflammatory, and anticancer activities. In the present study, we found that luteolin has biphasic effects on the viability of the human breast cancer cell line MCF-7. That is, cell viability increased at relatively low luteolin concentrations and decreased at relatively high concentrations. Focusing on the proliferative effect at low concentrations, we showed that luteolin has a cytoprotective effect on MCF-7 cells when administered with doxorubicin. Moreover, luteolin attenuated doxorubicin-induced cytotoxicity even in the presence of the estrogen receptor (ER) antagonist ICI 182,780 and the ER-negative MDA-MB-453 human breast cancer cell line. Reactive oxygen species (ROS) were generated after doxorubicin treatment of MCF-7 cells. In contrast, luteolin attenuated doxorubicin-induced ROS generation. Levels of the antiapoptotic protein Bcl-2 in luteolin-treated MCF-7 cells were significantly higher than those in doxorubicin-treated MCF-7 cells. Our results suggest that a low concentration of luteolin attenuates doxorubicin-induced cytotoxicity to MCF-7 cells through a combination of antioxidant activity and an increase in levels of Bcl-2 protein.