首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Bayesian Reconstruction of Missing Observations
  • 本地全文:下载
  • 作者:Shun KATAOKA ; Muneki YASUDA ; Kazuyuki TANAKA
  • 期刊名称:Interdisciplinary Information Sciences
  • 印刷版ISSN:1340-9050
  • 电子版ISSN:1347-6157
  • 出版年度:2015
  • 卷号:21
  • 期号:1
  • 页码:11-23
  • DOI:10.4036/iis.2015.11
  • 出版社:The Editorial Committee of the Interdisciplinary Information Sciences
  • 摘要:We focus on an interpolation method referred to Bayesian reconstruction in this paper. Whereas in standard interpolation methods missing data are interpolated deterministically, in Bayesian reconstruction, missing data are interpolated probabilistically using a Bayesian treatment. In this paper, we address the framework of Bayesian reconstruction and its application to the traffic data reconstruction problem in the field of traffic engineering. In the latter part of this paper, we describe the evaluation of the statistical performance of our Bayesian traffic reconstruction model using a statistical mechanical approach and clarify its statistical behavior.
  • 关键词:Bayesian reconstruction;missing data;traffic data reconstruction;Markov random field;mean-field analysis
国家哲学社会科学文献中心版权所有