首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Selective Regulation of FGF19 and FGF21 Expression by Cellular and Nutritional Stress
  • 本地全文:下载
  • 作者:Makoto SHIMIZU ; Hitomi MORIMOTO ; Ryuto MARUYAMA
  • 期刊名称:Journal of Nutritional Science and Vitaminology
  • 印刷版ISSN:0301-4800
  • 电子版ISSN:1881-7742
  • 出版年度:2015
  • 卷号:61
  • 期号:2
  • 页码:154-160
  • DOI:10.3177/jnsv.61.154
  • 出版社:Center for Academic Publications Japan
  • 摘要:Fibroblast growth factor 19 (FGF19) and FGF21 are members of a subfamily of the FGFs called endocrine FGFs. FGF19 regulates the bile acid synthetic pathway. FGF19 expression is induced by farnesoid X receptor (FXR), a nuclear hormone receptor activated by bile acids in the small intestine. FGF21 plays an important role in lipolysis that occurs in white adipose tissue. FGF21 expression is stimulated by the nuclear fatty acid receptor peroxisome proliferator-activated receptor α (PPARα) in the liver. FGF19 and FGF21 were recently identified as targets of activating transcription factor 4 (ATF4), which is activated in response to endoplasmic reticulum (ER) stress. ATF4 is also activated by oxidative stress and amino acid deprivation. In this study, we investigated FGF19 and FGF21 expression in response to oxidative stress and amino acid deprivation. We found that FGF19 mRNA is induced by oxidative stress inducers in Caco-2 cells, which are derived from the human intestinal epithelium, and rat intestinal epithelial IEC6 cells. In contrast, ileal FGF15 expression, the rodent ortholog of human FGF19, is not increased by oxidative stress. No notable changes in expression of FGF15/19 took place under amino acid deprivation either in vitro or in vivo. In contrast, FGF21 expression is induced by oxidative stress and amino acid deprivation both in vitro and in vivo. These results indicate distinctive patterns of regulation of FGF19 expression by ER stress, and FGF21 expression by ER stress, oxidative stress, and amino acid deprivation through ATF4 activation.
  • 关键词:FGF19;FGF21;ATF4;oxidative stress;amino acid deprivation
国家哲学社会科学文献中心版权所有