首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:The Biosynthesis of the Thiazole Moiety of Thiamin in the Archaeon Halobacterium salinarum
  • 本地全文:下载
  • 作者:Maria HAYASHI ; Yukie KIJIMA ; Keiko TAZUYA-MURAYAMA
  • 期刊名称:Journal of Nutritional Science and Vitaminology
  • 印刷版ISSN:0301-4800
  • 电子版ISSN:1881-7742
  • 出版年度:2015
  • 卷号:61
  • 期号:3
  • 页码:270-274
  • DOI:10.3177/jnsv.61.270
  • 出版社:Center for Academic Publications Japan
  • 摘要:The biosynthetic pathways of the thiazole moiety of thiamin were studied in the archaeon Halobacterium salinarum . Thiamin is generated by the union of 4-amino-5-hydroxymethyl-2-methylpyrimidine (pyrimidine) and 5-(2-hydroxyethyl)-4-methylthiazole (thiazole). The biosynthesis of thiazole is different in facultative anaerobes, aerobes and eukaryotes. In eukaryotes, the C-4, -4′, -5, -5′ and -5" of the thiazole is biosynthesized from nicotinamide adenine dinucleotide (NAD), with cysteine as S donor and the C-2 and N atoms of glycine. In facultative anaerobic bacteria, such as Escherichia coli , the precursors of the thiazole are the N and C-2 atoms from tyrosine and C-4, -4′, -5, -5′ and -5" from 1-deoxy- D -xylurose-5-phosphate, again with cysteine as S donor. In aerobic bacteria, such as Bacillus subtilis , L -tyrosine is replaced by glycine. In Archaea, known as the third domain of life, the biosynthetic pathway of thiamin has not yet been elucidated. In the present study in the archaeon H. salinarum , it was shown that both the N and C-2 from glycine are incorporated into the thiazole, rather than the N atom coming from L -tyrosine. These results show that thiazole biosynthesis in H. salinarum more closely resembles the biosynthetic pathway found in eukaryotes.
  • 关键词:thiamin;biosynthesis;thiazole;archaea;Halobacterium salinarum
国家哲学社会科学文献中心版权所有