首页    期刊浏览 2025年04月16日 星期三
登录注册

文章基本信息

  • 标题:ノイズを有する関数最適化のための進化戦略
  • 本地全文:下载
  • 作者:益富 和之 ; 永田 裕一 ; 小野 功
  • 期刊名称:進化計算学会論文誌
  • 电子版ISSN:2185-7385
  • 出版年度:2015
  • 卷号:6
  • 期号:1
  • 页码:1-12
  • DOI:10.11394/tjpnsec.6.1
  • 出版社:The Japanese Society for Evolutionary Computation
  • 摘要:

    This paper proposes a novel evolution strategy for noisy function optimization. We consider minimization of the expectation of a continuous domain function with stochastic parameters. The proposed method is an extended variant of distance-weighted exponential evolution strategy (DX-NES), which is a state-of-the-art algorithm for deterministic function optimization. We name it DX-NES for uncertain environments (DX-NES-UE). DX-NES-UE estimates the objective function by a quadratic surrogate function. In order to make a balance between speed and accuracy, DX-NES-UE uses surrogate function values when the noise is strong; otherwise it uses observed objective function values. We conduct numerical experiments on 20-dimensional benchmark problems to compare the performance of DX-NES-UE and that of uncertainty handling covariance matrix adaptation evolution strategy (UH-CMA-ES). UH-CMA-ES is one of the most promising methods for noisy function optimization. Benchmark problems include a multimodal function, ill-scaled functions and a non-C2 function with additive noise and decision variable perturbation (sometime called actuator noise). The experiments show that DX-NES-UE requires about 1/100 times as many observations as UH-CMA-ES does on well-scaled functions. The performance difference is greater on ill-scaled functions.

  • 关键词:DX-NES; UH-CMA-ES; noisy function optimization; surrogate function; stochastic descent; additive noise; decision variable perturbation
国家哲学社会科学文献中心版权所有