首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Time Series Mixture Model Considering Dependence to Multiple Topics
  • 本地全文:下载
  • 作者:Kentaro Sasaki ; Tomohiro Yoshikawa ; Takeshi Furuhashi
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2015
  • 卷号:30
  • 期号:2
  • 页码:466-472
  • DOI:10.1527/tjsai.30.466
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:This paper proposes a mixture model that considers dependence to multiple topics. In time series documents such as news, blog articles, and SNS user posts, topics evolve with depending on one another, and they can die out, be born, merge, or split at any time. The conventional models cannot model the evolution of all of the above aspects because they assume that each topic depends on only one previous topic. In this paper, we propose a new mixture model which assumes that a topic depends on previous multiple topics. This paper shows that the proposed model can capture the topic evolution of death, birth, merger, and split and can model time series documents more adequately than the conventional models.
  • 关键词:topic model ; trend analysis ; time series document
国家哲学社会科学文献中心版权所有