首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Efficient Top-k Search for PageRank
  • 本地全文:下载
  • 作者:Yasuhiro Fujiwara ; Makoto Nakatsuji ; Hiroaki Shiokawa
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2015
  • 卷号:30
  • 期号:2
  • 页码:473-478
  • DOI:10.1527/tjsai.30.473
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:In AI communities, many applications utilize PageRank. To obtain high PageRank score nodes, the original approach iteratively computes the PageRank score of each node until convergence from the whole graph. If the graph is large, this approach is infeasible due to its high computational cost. The goal of this study is to find top-k PageRank score nodes efficiently for a given graph without sacrificing accuracy. Our solution, F-Rank, is based on two ideas: (1) It iteratively estimates lower/upper bounds of PageRank scores, and (2) It constructs subgraphs in each iteration by pruning unnecessary nodes and edges to identify top-k nodes. Experiments show that F-Rank finds top-k nodes much faster than the original approach.
  • 关键词:graph mining ; efficient ; top-k seach
国家哲学社会科学文献中心版权所有