首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:A further critique of the analytic strategy of adjusting for covariates to identify biologic mediation
  • 作者:Jay S Kaufman ; Richard F MacLehose ; Sol Kaufman
  • 期刊名称:Epidemiologic Perspectives & Innovations
  • 电子版ISSN:1742-5573
  • 出版年度:2004
  • 卷号:1
  • 期号:1
  • 页码:1-13
  • DOI:10.1186/1742-5573-1-4
  • 语种:English
  • 出版社:Springer Verlag
  • 摘要:Background

    Epidemiologic research is often devoted to etiologic investigation, and so techniques that may facilitate mechanistic inferences are attractive. Some of these techniques rely on rigid and/or unrealistic assumptions, making the biologic inferences tenuous. The methodology investigated here is effect decomposition : the contrast between effect measures estimated with and without adjustment for one or more variables hypothesized to lie on the pathway through which the exposure exerts its effect. This contrast is typically used to distinguish the exposure's indirect effect, through the specified intermediate variables, from its direct effect, transmitted via pathways that do not involve the specified intermediates.

    Methods

    We apply a causal framework based on latent potential response types to describe the limitations inherent in effect decomposition analysis. For simplicity, we assume three measured binary variables with monotonic effects and randomized exposure, and use difference contrasts as measures of causal effect. Previous authors showed that confounding between intermediate and the outcome threatens the validity of the decomposition strategy, even if exposure is randomized. We define exchangeability conditions for absence of confounding of causal effects of exposure and intermediate, and generate two example populations in which the no-confounding conditions are satisfied. In one population we impose an additional prohibition against unit-level interaction (synergism). We evaluate the performance of the decomposition strategy against true values of the causal effects, as defined by the proportions of latent potential response types in the two populations.

    Results

    We demonstrate that even when there is no confounding, partition of the total effect into direct and indirect effects is not reliably valid. Decomposition is valid only with the additional restriction that the population contain no units in which exposure and intermediate interact to cause the outcome. This restriction implies homogeneity of causal effects across strata of the intermediate.

    Conclusions

    Reliable effect decomposition requires not only absence of confounding, but also absence of unit-level interaction and use of linear contrasts as measures of causal effect. Epidemiologists should be wary of etiologic inference based on adjusting for intermediates, especially when using ratio effect measures or when absence of interacting potential response types cannot be confidently asserted.

  • 关键词:effect decomposition ;causality ;confounding ;counterfactual models ;bias
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有