摘要:Magnetoelectric multiferroics are materials that have coupled magnetic and electric dipole orders, which can bring novel physical phenomena and offer possibilities for new device functions. In this report, single-crystalline Bi4.2K0.8Fe2O9+δ nanobelts which are isostructural with the high-temperature superconductor Bi2Sr2CaCu2O8+δ are successfully grown by a hydrothermal method. The regular stacking of the rock salt slabs and the BiFeO3-like perovskite blocks along the c axis of the crystal makes the Bi4.2K0.8Fe2O9+δ nanobelts have a natural magnetoelectric–dielectric superlattice structure. The most striking result is that the bulk material made of the Bi4.2K0.8Fe2O9+δ nanobelts is of multiferroicity near room temperature accompanied with a structure anomaly. When an external magnetic field is applied, the electric polarization is greatly suppressed, and correspondingly, a large negative magnetocapacitance coefficient is observed around 270 K possibly due to the magnetoelectric coupling effect. Our result provides contributions to the development of single phase multiferroics.