摘要:A dual-specificity, paralogue-free Cdc14 phosphatase was located in the nuclei of Beauveria bassiana (filamentous entomopathogen) and functionally characterized. Inactivation of cdc14 caused defective cytokinesis due to multinucleate cells formed in Δcdc14 and 89% decrease of blastospore production, followed by slower growth and a loss of ≥ 96% conidial yield under normal conditions. These defects coincided well with drastic down-regulation of 25 genes required for mitosis and conidiation. Moreover, Δcdc14 became hypersensitive to oxidative, osmotic, and cell wall and mitosis perturbing stresses, and lost 41−70% of conidial thermotolerance, UV-B resistance and virulence, accompanied with transcriptional down-regualtion of various signaling factors and stress-responsive effectors and depressed phosphorylation signals of Hog1 and Slt2 in high-osmolarity glycerol and cell-wall integrity pathways. All changes were well restored by rescuing cdc14. Our findings indicate that Cdc14 vital for the fungal cytokinesis acts as a signaling hub in regulating not only asexual development but multi-stress responses and virulence.