摘要:Macrophages are rapidly conditioned by cognate and soluble signals to acquire phenotypes that deliver specific functions during inflammation, wound healing and angiogenesis. Whether inhibitory CD200R signaling regulates pro-angiogenic macrophage phenotypes with the potential to suppress ocular neovascularization is unknown. CD200R-deficient bone marrow derived macrophages (BMMΦ) were used to demonstrate that macrophages lacking this inhibitory receptor exhibit enhanced levels of Vegfa, Arg-1 and Il-1β when stimulated with PGE2 or RPE-conditioned (PGE2-enriched) media. Endothelial tube formation in HUVECs was increased when co-cultured with PGE2-conditioned CD200R−/− BMMΦ, and laser-induced choroidal neovascularization was enhanced in CD200R-deficient mice. In corroboration, signaling through CD200R results in the down-regulation of BMMΦ angiogenic and pro-inflammatory phenotypes. Translational potential of this pathway was investigated in the laser-induced model of choroidal neovascularization. Local delivery of a CD200R agonist mAb to target myeloid infiltrate alters macrophage phenotype and inhibits pro-angiogenic gene expression, which suppresses pathological angiogenesis and CNV development.