摘要:Rare Earth (RE) activated upconversion phosphors (UCPs), have demonstrated significant application potentials in some front fields, including solar energy conversion and bio-application. However, some bottleneck problems should be overcame, such as the lower upconversion efficiency, narrower excitation band, concentration-quenching and temperature-quenching. To solve these problems, the Ag-SiO2-Er2O3 nanocomposites were fabricated, in which the upconversion luminescence (UCL) of Er2O3 was white broadband. Through the interaction of Er2O3 with surface plasmon (SP) of silver nanoparticles (SNPs), the threshold power for generating broadbands was suppressed largely in contrast to the Er2O3 nanoparticles (NPs), while the UCL brightness was enhanced remarkably, ranging from several to 104 times, which strongly depended on the power density of excitation light. At excitation power density of 1.50 W/mm2 of 980 nm light, the UCL intensity of Ag-SiO2-Er2O3 is 40-folds than the well-known NaYF4:Yb3+,Er3+ commercial powders. And more, it is also interesting to observe that the composites demonstrate two excitation bands extending of 780–980 nm, highly improved UCL with elevated temperature and excitation power density. The UCL mechanism related to UCL enhancement was carefully studied.