期刊名称:Revista Internacional de Contaminación Ambiental
印刷版ISSN:0188-4999
出版年度:2013
卷号:29
期号:1
页码:117-140
语种:English
出版社:Centro de Ciencias de la Atmósfera
摘要:Metals are among the most prevalent substances released into the environment that have a profound effect on living organisms. Chronic environmental exposures usually exert a continuum of biological responses across levels of biological organization, ranging from alterations in molecules, compromising individual health and putting ecosystem integrity at risk. Such scenarios have triggered the research to establish “early-warning” signals, or “biomarkers”, reflecting the adverse biological responses towards environmental pollution. In this review, we assess the different types of biomarkers most used to analyze environmental metal pollution across all levels of biological organization. Also, the “omics” approach is described and how these novel technologies are reinventing the field of toxicology, providing “molecular signatures” of exposure, enabling a more robust risk assessment than has ever been achieved previously. Finally, conclusions and suggestions are given, highlighting why future efforts must focus on integrating biomarker response across levels of biological organization, which integrate realistic exposures using multi-species and multiple-biomarkers with prognostic value to resolve or at least have a closer insight into complex environmental problems
其他摘要:Metals are among the most prevalent substances released into the environment that have a profound effect on living organisms. Chronic environmental exposures usually exert a continuum of biological responses across levels of biological organization, ranging from alterations in molecules, compromising individual health and putting ecosystem integrity at risk. Such scenarios have triggered the research to establish “early-warning” signals, or “biomarkers”, reflecting the adverse biological responses towards environmental pollution. In this review, we assess the different types of biomarkers most used to analyze environmental metal pollution across all levels of biological organization. Also, the “omics” approach is described and how these novel technologies are reinventing the field of toxicology, providing “molecular signatures” of exposure, enabling a more robust risk assessment than has ever been achieved previously. Finally, conclusions and suggestions are given, highlighting why future efforts must focus on integrating biomarker response across levels of biological organization, which integrate realistic exposures using multi-species and multiple-biomarkers with prognostic value to resolve or at least have a closer insight into complex environmental problems