首页    期刊浏览 2025年07月28日 星期一
登录注册

文章基本信息

  • 标题:On the result of Doney
  • 本地全文:下载
  • 作者:Pogany, Tibor K ; Nadarajah, Saralees
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2015
  • 卷号:20
  • 期号:0
  • 页码:1-4
  • DOI:10.1214/ECP.v20-4081
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:Let $X$ denote a spectrally positive stable process of index $\alpha \in (1, 2)$ whose Lévy measure has density $c x^{-\alpha - 1}$, $x > 0$ and let $S = \displaystyle \sup_{0 \leq t \leq 1} X_t$. Doney (Stochastics 80, 2008, 151-155) proved that the density of $S$ say $s$ behaves as $s (x) \sim c x^{-\alpha - 1}$ as $x \to \infty$. The proof given was nearly four pages long. Here, we: i) give a shorter and a more general proof of the same result; ii) derive the first known closed form expressions for $s (x)$ and the corresponding cumulative distribution function; iii) derive the order of the remainder in the asymptotic expansion for $s (x)$.
  • 关键词:Asymptotic behavior; Stable process; Wright generalized hypergeometric $\Psi$ function
国家哲学社会科学文献中心版权所有