期刊名称:EQA - International Journal of Environmental Quality
印刷版ISSN:2281-4485
出版年度:2011
卷号:7
期号:7
页码:1-16
DOI:10.6092/issn.2281-4485/3829
语种:English
出版社:Alma Mater Studiorum - University of Bologna
摘要:Aim of this work was to assess the impact of the chronic exposure of CeO 2 nanoparticles (NPs) (50 to 105 nm nominal size) on soil microbial biomass. To evaluate if the CeO 2 NPs can affect the soil quality, they were mixed to an A1 and A2 horizon of Epileptic Cambisols at a concentrations of 100 ppm and incubated in lab for short and medium (7 and 60 days) times, at a constant temperature (25°C) and moisture (60% WHC). The preliminary results of the soil physicochemical analyses have showed an insolubility of the CeO 2 NPs at short-term incubation in water, EDTA and aqua regia. The biological assays detect a storing of Ce-CeO 2 in the microbial biomass at short time that decreases in the C amount. An increment of the basal respiration and a decrease in the amount of carbon soil microbial biomass determined a higher metabolic quotient (qCO 2 ) than the control test, that identifies a stressful situation, most evident in the short term condition. Physical-chemical characterization of the CeO 2 NPs and of the soil before and after the NPs addition, was carried out by means of Environmental Scanning Electron Microscope (ESEM) and an Energy Dispersive Spectroscopy (EDS). The investigations showed Ce-NPs and Ce-compounds in both- incubation-condition samples. The control soil showed the presence of cerium associated with other elements, like P, Nd, La, Th e Si. From literature, it appears that these elements identify Monazite-Ce/Nd minerals, whose chemical formulas are respectively (Ce, La, Nd, Th) PO 4 and (Nd, Ce, La) (P, Si) O 4 . The presence of CeO 2 NPs was clearly detected in soil and recognized by ESEM morphological observations coupled with EDS characterization. The NPs chemical composition appears unaltered, while the size can be modified by NPs aggregation and clustering. The results contribute to setting reference baseline values of cerium in soil and indicate an impact on the amount of carbon soil microbial biomass due to a higher metabolic quotient (qCO 2 ) that can condition the soil fertility.
其他摘要:Aim of this work was to assess the impact of the chronic exposure of CeO2 nanoparticles (NPs) (50 to 105 nm nominal size) on soil microbial biomass.To evaluate if the CeO2 NPs can affect the soil quality, they were mixed to an A1 and A2 horizon of Epileptic Cambisols at a concentrations of 100 ppm and incubated in lab for short and medium (7 and 60 days) times, at a constant temperature (25°C) and moisture (60% WHC).The preliminary results of the soil physicochemical analyses have showed an insolubility of the CeO2 NPs at short-term incubation in water, EDTA and aqua regia. The biological assays detect a storing of Ce-CeO2 in the microbial biomass at short time that decreases in the C amount. An increment of the basal respiration and a decrease in the amount of carbon soil microbial biomass determined a higher metabolic quotient (qCO2) than the control test, that identifies a stressful situation, most evident in the short term condition.Physical-chemical characterization of the CeO2 NPs and of the soil before and after the NPs addition, was carried out by means of Environmental Scanning Electron Microscope (ESEM) and an Energy Dispersive Spectroscopy (EDS). The investigations showed Ce-NPs and Ce-compounds in both- incubation-condition samples. The control soil showed the presence of cerium associated with other elements, like P, Nd, La, Th e Si. From literature, it appears that these elements identify Monazite-Ce/Nd minerals, whose chemical formulas are respectively (Ce, La, Nd, Th) PO4 and (Nd, Ce, La) (P, Si) O4. The presence of CeO2 NPs was clearly detected in soil and recognized by ESEM morphological observations coupled with EDS characterization. The NPs chemical composition appears unaltered, while the size can be modified by NPs aggregation and clustering.The results contribute to setting reference baseline values of cerium in soil and indicate an impact on the amount of carbon soil microbial biomass due to a higher metabolic quotient (qCO2) that can condition the soil fertility.
关键词:nanoparticles;cerium oxide;bioindications;soil microbial biomass;electron microscopy;nanoparticules;oxyde de cérium;bioindicateurs;biomasse microbienne du sol; microscopie électronique;nanoparticelle;ossido di cerio;bioindicatori;biomassa microbica del suolo;microscopia elettronica
其他关键词:nanoparticles; cerium oxide; bioindications; soil microbial biomass; electron microscopy