期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2015
卷号:13
期号:4
页码:1270-1280
DOI:10.12928/telkomnika.v13i4.1774
语种:English
出版社:Universitas Ahmad Dahlan
摘要:PV has become universal for power utility applications in comparison to conventional technologies when it comes to economic competitiveness. As the efficiency of solar PV panel is low, it becomes mandatory to extract maximum power from the PV panel at any given period of time. Maximum Power and efficiency in Photovoltaics can be improved by Maximum Power Point tracking even under distributed temperature and irradiance functions. The paper attempts to compare two different Buck converter models based on predictive control. The two converter models using State space differential equation and direct component in MATLAB/SIMULINK are optimized through PID and FLC to obtain increased gain and desired converter output. A PV system connected with Buck converter using an intelligent controller (FLC) for extracting maximum power at different environmental conditions is proposed and the results are compared with conventional PID controller.
其他摘要:PV has become universal for power utility applications in comparison to conventional technologies when it comes to economic competitiveness. As the efficiency of solar PV panel is low, it becomes mandatory to extract maximum power from the PV panel at any given period of time. Maximum Power and efficiency in Photovoltaics can be improved by Maximum Power Point tracking even under distributed temperature and irradiance functions. The paper attempts to compare two different Buck converter models based on predictive control. The two converter models using State space differential equation and direct component in MATLAB/SIMULINK are optimized through PID and FLC to obtain increased gain and desired converter output. A PV system connected with Buck converter using an intelligent controller (FLC) for extracting maximum power at different environmental conditions is proposed and the results are compared with conventional PID controller.