首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Cloud computing approaches for prediction of ligand binding poses and pathways
  • 本地全文:下载
  • 作者:Morgan Lawrenz ; Diwakar Shukla ; Vijay S. Pande
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep07918
  • 出版社:Springer Nature
  • 摘要:We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μ M for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.
国家哲学社会科学文献中心版权所有