首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Quantum Hooke's Law to Classify Pulse Laser Induced Ultrafast Melting
  • 本地全文:下载
  • 作者:Hao Hu ; Hepeng Ding ; Feng Liu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep08212
  • 出版社:Springer Nature
  • 摘要:Ultrafast crystal-to-liquid phase transition induced by femtosecond pulse laser excitation is an interesting material's behavior manifesting the complexity of light-matter interaction. There exist two types of such phase transitions: one occurs at a time scale shorter than a picosecond via a nonthermal process mediated by electron-hole plasma formation; the other at a longer time scale via a thermal melting process mediated by electron-phonon interaction. However, it remains unclear what material would undergo which process and why? Here, by exploiting the property of quantum electronic stress (QES) governed by quantum Hooke's law, we classify the transitions by two distinct classes of materials: the faster nonthermal process can only occur in materials like ice having an anomalous phase diagram characterized with dTm/dP m is the melting temperature and P is pressure, above a high threshold laser fluence; while the slower thermal process may occur in all materials. Especially, the nonthermal transition is shown to be induced by the QES, acting like a negative internal pressure, which drives the crystal into a “super pressing” state to spontaneously transform into a higher-density liquid phase. Our findings significantly advance fundamental understanding of ultrafast crystal-to-liquid phase transitions, enabling quantitative a priori predictions.
国家哲学社会科学文献中心版权所有