首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Bayesian-based deconvolution fluorescence microscopy using dynamically updated nonstationary expectation estimates
  • 本地全文:下载
  • 作者:Alexander Wong ; Xiao Yu Wang ; Maud Gorbet
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2015
  • 卷号:5
  • DOI:10.1038/srep10849
  • 出版社:Springer Nature
  • 摘要:Fluorescence microscopy is widely used for the study of biological specimens. Deconvolution can significantly improve the resolution and contrast of images produced using fluorescence microscopy; in particular, Bayesian-based methods have become very popular in deconvolution fluorescence microscopy. An ongoing challenge with Bayesian-based methods is in dealing with the presence of noise in low SNR imaging conditions. In this study, we present a Bayesian-based method for performing deconvolution using dynamically updated nonstationary expectation estimates that can improve the fluorescence microscopy image quality in the presence of noise, without explicit use of spatial regularization.
国家哲学社会科学文献中心版权所有