摘要:The influence of annealing time on temperature range of martensitic phase transition (ΔTA-M), thermal hysteresis (ΔThys), magnetic hysteresis loss (ΔMhys), magnetic entropy change (ΔSM) and relative refrigeration capacity (RC) of the Mn-rich Ni43Mn46Sn11 melt spun ribbons have been systematically studied. By optimal annealing, an extremely large ΔSM of 43.2 J.kg−1K−1 and a maximum RC of 221.0 J.kg−1 could be obtained respectively in a field change of 5 T. Both ΔTA-M and ΔThys decreases after annealing, while ΔMhys and ΔSM first dramatically increase to a maximum then degenerates as increase of annealing time. A large effective cooling capacity (RCeff) of 115.4 J.kg−1 was achieved in 60 min annealed ribbons, which increased 75% compared with that unannealed ribbons. The evolution of magnetic properties and magnetocaloric effect has been discussed and proved by atomic ordering degree, microstructure and composition analysis.