When reporting incidence rate estimates for relatively rare health conditions, associated case counts are often assumed to follow a Poisson distribution. Case counts obtained from large-scale electronic surveillance systems are often inflated by the presence of false positives, however, and adjusted case counts based on the results of a validation sample will have variances which are hyper-Poisson. This paper presents a simple method for constructing interval estimates for incidence rates based on case counts that are adjusted downward using an estimate of the predictive value positive of the surveillance case definition.
Loading...