首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Computing the Most Significant Solution from Pareto Front obtained in Multi-objective Evolutionary
  • 本地全文:下载
  • 作者:P.M Chaudhari ; Dr. R.V. Dharaskar ; Dr. V. M. Thakare
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2010
  • 卷号:1
  • 期号:4
  • DOI:10.14569/IJACSA.2010.010411
  • 出版社:Science and Information Society (SAI)
  • 摘要:Problems with multiple objectives can be solved by using Pareto optimization techniques in evolutionary multi-objective optimization algorithms. Many applications involve multiple objective functions and the Pareto front may contain a very large number of points. Selecting a solution from such a large set is potentially intractable for a decision maker. Previous approaches to this problem aimed to find a representative subset of the solution set. Clustering techniques can be used to organize and classify the solutions. Implementation of this methodology for various applications and in a decision support system is also discussed.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Multiobjective;Pareto front ;Clustering techniques
国家哲学社会科学文献中心版权所有