首页    期刊浏览 2025年07月24日 星期四
登录注册

文章基本信息

  • 标题:CluSandra: A Framework and Algorithm for Data Stream Cluster Analysis
  • 本地全文:下载
  • 作者:Josh R Fernandez ; Eman M. El-Sheikh
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2011
  • 卷号:2
  • 期号:11
  • DOI:10.14569/IJACSA.2011.021115
  • 出版社:Science and Information Society (SAI)
  • 摘要:The clustering or partitioning of a dataset’s records into groups of similar records is an important aspect of knowledge discovery from datasets. A considerable amount of research has been applied to the identification of clusters in very large multi-dimensional and static datasets. However, the traditional clustering and/or pattern recognition algorithms that have resulted from this research are inefficient for clustering data streams. A data stream is a dynamic dataset that is characterized by a sequence of data records that evolves over time, has extremely fast arrival rates and is unbounded. Today, the world abounds with processes that generate high-speed evolving data streams. Examples include click streams, credit card transactions and sensor networks. The data stream’s inherent characteristics present an interesting set of time and space related challenges for clustering algorithms. In particular, processing time is severely constrained and clustering algorithms must be performed in a single pass over the incoming data. This paper presents both a clustering framework and algorithm that, combined, address these challenges and allows end-users to explore and gain knowledge from evolving data streams. Our approach includes the integration of open source products that are used to control the data stream and facilitate the harnessing of knowledge from the data stream. Experimental results of testing the framework with various data streams are also discussed.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; data stream; data mining; cluster analysis; knowledge discovery; machine learning; Cassandra database; BIRCH; CluStream; distributed systems.
国家哲学社会科学文献中心版权所有