首页    期刊浏览 2025年12月04日 星期四
登录注册

文章基本信息

  • 标题:The threshold EM algorithm for parameter learning in bayesian network with incomplete data
  • 本地全文:下载
  • 作者:Fradj Ben Lamine ; Karim Kalti ; Mohamed Ali Mahjoub
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2011
  • 卷号:2
  • 期号:7
  • DOI:10.14569/IJACSA.2011.020713
  • 出版社:Science and Information Society (SAI)
  • 摘要:Bayesian networks (BN) are used in a big range of applications but they have one issue concerning parameter learning. In real application, training data are always incomplete or some nodes are hidden. To deal with this problem many learning parameter algorithms are suggested foreground EM, Gibbs sampling and RBE algorithms. In order to limit the search space and escape from local maxima produced by executing EM algorithm, this paper presents a learning parameter algorithm that is a fusion of EM and RBE algorithms. This algorithm incorporates the range of a parameter into the EM algorithm. This range is calculated by the first step of RBE algorithm allowing a regularization of each parameter in bayesian network after the maximization step of the EM algorithm. The threshold EM algorithm is applied in brain tumor diagnosis and show some advantages and disadvantages over the EM algorithm.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; bayesian network; parameter learning; missing data; EM algorithm; Gibbs sampling; RBE algorithm; brain tumor.
国家哲学社会科学文献中心版权所有