首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Multilayer Neural Networks and Nearest Neighbor Classifier Performances for Image Annotation
  • 本地全文:下载
  • 作者:Mustapha OUJAOURA, ; Brahim MINAOUI ; Mohammed FAKIR
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2012
  • 卷号:3
  • 期号:11
  • DOI:10.14569/IJACSA.2012.031126
  • 出版社:Science and Information Society (SAI)
  • 摘要:The explosive growth of image data leads to the research and development of image content searching and indexing systems. Image annotation systems aim at annotating automatically animage with some controlled keywords that can be used for indexing and retrieval of images. This paper presents a comparative evaluation of the image content annotation system by using the multilayer neural networks and the nearest neighbour classifier. The region growing segmentation is used to separate objects, the Hu moments, Legendre moments and Zernike moments which are used in as feature descriptors for the image content characterization and annotation.The ETH-80 database image is used in the experiments here. The best annotation rate is achieved by using Legendre moments as feature extraction method and the multilayer neural network as a classifier.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Image annotation; region growing segmentation; multilayer neural network classifier; nearest neighbour classifier; Zernike moments; Legendre moments; Hu moments; ETH-80 database.
国家哲学社会科学文献中心版权所有