首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:SAS: Implementation of scaled association rules on spatial multidimensional quantitative dataset
  • 本地全文:下载
  • 作者:M. N. Doja ; Sapna Jain ; M Afshar Alam
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2012
  • 卷号:3
  • 期号:9
  • DOI:10.14569/IJACSA.2012.030919
  • 出版社:Science and Information Society (SAI)
  • 摘要:Mining spatial association rules is one of the most important branches in the field of Spatial Data Mining (SDM). Because of the complexity of spatial data, a traditional method in extracting spatial association rules is to transform spatial database into general transaction database. The Apriori algorithm is one of the most commonly used methods in mining association rules at present. But a shortcoming of the algorithm is that its performance on the large database is inefficient. The present paper proposed a new algorithm by extracting maximum frequent itemsets based on spatial multidimensional quantitative dataset. Algorithms for mining spatial association rules are similar to association rule mining except consideration of special data, the predicates generation and rule generation processes are based on Apriori. The proposed method (SAS) Scaled Aprori on Spatial multidimensional quantitative dataset in the paper reduces the number of itemsets generated and also improves the execution time of the algorithm.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; association rules; spatial dataset; X tree.
国家哲学社会科学文献中心版权所有