期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2013
卷号:4
期号:11
DOI:10.14569/IJACSA.2013.041105
出版社:Science and Information Society (SAI)
摘要:Energy simulation tool is a tool to simulate energy use by a building prior to the erection of the building. Commonly it has a feature providing alternative designs that are better than the user’s design. In this paper, we propose a novel method in searching alternative design that is by using classification method. The classifiers we use are Naïve Bayes, Decision Tree, and k-Nearest Neighbor. Our experiment shows that Decision Tree has the fastest classification time followed by Naïve Bayes and k-Nearest Neighbor. The differences between classification time of Decision Tree and Naïve Bayes also between Naïve Bayes and k-NN are about an order of magnitude. Based on Percision, Recall, F-measure, Accuracy, and AUC, the performance of Naïve Bayes is the best. It outperforms Decision Tree and k-Nearest Neighbor on all parameters but precision.