首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Mining Frequent Itemsets from Online Data Streams: Comparative Study
  • 本地全文:下载
  • 作者:HebaTallah Mohamed Nabil ; Ahmed Sharaf Eldin ; Mohamed Abd El-Fattah Belal
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2013
  • 卷号:4
  • 期号:7
  • DOI:10.14569/IJACSA.2013.040717
  • 出版社:Science and Information Society (SAI)
  • 摘要:Online mining of data streams poses many new challenges more than mining static databases. In addition to the one-scan nature, the unbounded memory requirement, the high data arrival rate of data streams and the combinatorial explosion of itemsets exacerbate the mining task. The high complexity of the frequent itemsets mining problem hinders the application of the stream mining techniques. In this review, we present a comparative study among almost all, as we are acquainted, the algorithms for mining frequent itemsets from online data streams. All those techniques immolate with the accuracy of the results due to the relatively limited storage, leading, at all times, to approximated results.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Data mining; frequent itemsets; data stream; sliding window model; landmark model; fading model.
国家哲学社会科学文献中心版权所有