首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Bayesian framework for glaucoma progression detection using Heidelberg Retina Tomograph images
  • 本地全文:下载
  • 作者:Akram Belghith ; Christopher Bowd ; Madhusudhanan Balasubramanian
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2013
  • 卷号:4
  • 期号:9
  • DOI:10.14569/IJACSA.2013.040934
  • 出版社:Science and Information Society (SAI)
  • 摘要:Glaucoma, the second leading cause of blindness in the United States, is an ocular disease characterized by structural changes of the optic nerve head (ONH) and changes in visual function. Therefore, early detection is of high importance to preserve remaining visual function. In this context, the Heidelberg Retina Tomograph (HRT), a confocal scanning laser tomograph, is widely used as a research tool as well as a clinical diagnostic tool for imaging the optic nerve head to detect glaucoma and monitor its progression. In this paper, a glaucoma progression detection technique is proposed using the HRT images. Contrary to the existing methods that do not integrate the spatial pixel dependency in the change detection map, we propose the use of the Markov Random Field (MRF) to handle a such dependency. In order to estimate the model parameters, a Monte Carlo Markov Chain procedure is used. We then compared the diagnostic performance of the proposed framework to existing methods of glaucoma progression detection.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Glaucoma; Markov random field; change detec-tion; Bayesian estimation
国家哲学社会科学文献中心版权所有