首页    期刊浏览 2025年08月03日 星期日
登录注册

文章基本信息

  • 标题:Arabic Phrase-Level Contextual Polarity Recognition to Enhance Sentiment Arabic Lexical Semantic Database Generation
  • 本地全文:下载
  • 作者:Samir E. Abdelrahman ; Hanaa Mobarz ; Ibrahim Farag
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2014
  • 卷号:5
  • 期号:10
  • DOI:10.14569/IJACSA.2014.051005
  • 出版社:Science and Information Society (SAI)
  • 摘要:Most of opinion mining works need lexical resources for opinion which recognize the polarity of words (positive/ negative) regardless their contexts which called prior polarity. The word prior polarity may be changed when it is considered in its contexts, for example, positive words may be used in phrases expressing negative sentiments, or vice versa. In this paper, we aim at generating sentiment Arabic lexical semantic database having the word prior coupled with its contextual polarities and the related phrases. To do that, we study first the prior polarity effects of each word using our Sentiment Arabic Lexical Semantic Database on the sentence-level subjectivity and Support Vector Machine classifier. We then use the seminal English two-step contextual polarity phrase-level recognition approach to enhance word polarities within its contexts. Our results achieve significant improvement over baselines.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Sentiment Arabic Lexical Semantic Database; Support Vector Machine; Contextual Polarity
国家哲学社会科学文献中心版权所有