首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Study on Method of Feature Selection in Speech Content Classification
  • 本地全文:下载
  • 作者:Si An ; Xinghua Fan
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2014
  • 卷号:5
  • 期号:4
  • DOI:10.14569/IJACSA.2014.050412
  • 出版社:Science and Information Society (SAI)
  • 摘要:Information communication is developing rapidly now, Voice communication from a distance is more and more popular. In order to evaluate and classify the content correctly, the acoustic features is used to analyze first in this paper, Orthogonal experiment[1] method is used to find out characteristic of voice that has contribution to the speech content classification then make it and the textual characteristic together. The result of experiments shows that the feature combination of voice and content has better effect on voice content classification, the effectiveness has been improved.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; acoustic features; orthogonal experiment; the SVM classifier; CHI statistical methods; features level fusion; LBS vector quantization algorithm
国家哲学社会科学文献中心版权所有