首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Fast Efficient Clustering Algorithm for Balanced Data
  • 本地全文:下载
  • 作者:Adel A. Sewisy ; M. H. Marghny ; Rasha M. Abd ElAziz
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2014
  • 卷号:5
  • 期号:6
  • DOI:10.14569/IJACSA.2014.050619
  • 出版社:Science and Information Society (SAI)
  • 摘要:The Cluster analysis is a major technique for statistical analysis, machine learning, pattern recognition, data mining, image analysis and bioinformatics. K-means algorithm is one of the most important clustering algorithms. However, the k-means algorithm needs a large amount of computational time for handling large data sets. In this paper, we developed more efficient clustering algorithm to overcome this deficiency named Fast Balanced k-means (FBK-means). This algorithm is not only yields the best clustering results as in the k-means algorithm but also requires less computational time. The algorithm is working well in the case of balanced data.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Clustering; K-means algorithm; Bee algorithm; GA algorithm; FBK-means algorithm
国家哲学社会科学文献中心版权所有