期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2014
卷号:5
期号:6
DOI:10.14569/IJACSA.2014.050619
出版社:Science and Information Society (SAI)
摘要:The Cluster analysis is a major technique for statistical analysis, machine learning, pattern recognition, data mining, image analysis and bioinformatics. K-means algorithm is one of the most important clustering algorithms. However, the k-means algorithm needs a large amount of computational time for handling large data sets. In this paper, we developed more efficient clustering algorithm to overcome this deficiency named Fast Balanced k-means (FBK-means). This algorithm is not only yields the best clustering results as in the k-means algorithm but also requires less computational time. The algorithm is working well in the case of balanced data.