首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Clustering of Image Data Using K-Means and Fuzzy K-Means
  • 本地全文:下载
  • 作者:Md. Khalid Imam Rahmani ; Naina Pal ; Kamiya Arora
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2014
  • 卷号:5
  • 期号:7
  • DOI:10.14569/IJACSA.2014.050724
  • 出版社:Science and Information Society (SAI)
  • 摘要:Clustering is a major technique used for grouping of numerical and image data in data mining and image processing applications. Clustering makes the job of image retrieval easy by finding the images as similar as given in the query image. The images are grouped together in some given number of clusters. Image data are grouped on the basis of some features such as color, texture, shape etc. contained in the images in the form of pixels. For the purpose of efficiency and better results image data are segmented before applying clustering. The technique used here is K-Means and Fuzzy K-Means which are very time saving and efficient.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Clustering; Segmentation; K-Means Clustering; Fuzzy K-Means
国家哲学社会科学文献中心版权所有