首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Different Classification Algorithms Based on Arabic Text Classification: Feature Selection Comparative Study
  • 本地全文:下载
  • 作者:Ghazi Raho ; Riyad Al-Shalabi ; Ghassan Kanaan
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2015
  • 卷号:6
  • 期号:2
  • DOI:10.14569/IJACSA.2015.060228
  • 出版社:Science and Information Society (SAI)
  • 摘要:Feature selection is necessary for effective text classification. Dataset preprocessing is essential to make upright result and effective performance. This paper investigates the effectiveness of using feature selection. In this paper we have been compared the performance between different classifiers in different situations using feature selection with stemming, and without stemming.Evaluation used a BBC Arabic dataset, different classification algorithms such as decision tree (D.T), K-nearest neighbors (KNN), Naïve Bayesian (NB) method and Naïve Bayes Multinomial(NBM) classifier were used. The experimental results are presented in term of precision, recall, F-Measures, accuracy and time to build model.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Text Classification; Feature Selection; Arabic Text; Recall; F-Measure
国家哲学社会科学文献中心版权所有