期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2015
卷号:6
期号:2
DOI:10.14569/IJACSA.2015.060228
出版社:Science and Information Society (SAI)
摘要:Feature selection is necessary for effective text classification. Dataset preprocessing is essential to make upright result and effective performance. This paper investigates the effectiveness of using feature selection. In this paper we have been compared the performance between different classifiers in different situations using feature selection with stemming, and without stemming.Evaluation used a BBC Arabic dataset, different classification algorithms such as decision tree (D.T), K-nearest neighbors (KNN), Naïve Bayesian (NB) method and Naïve Bayes Multinomial(NBM) classifier were used. The experimental results are presented in term of precision, recall, F-Measures, accuracy and time to build model.