首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Graph-based Semi-Supervised Regression and Its Extensions
  • 本地全文:下载
  • 作者:Xinlu Guo ; Kuniaki Uehara
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2015
  • 卷号:6
  • 期号:6
  • DOI:10.14569/IJACSA.2015.060636
  • 出版社:Science and Information Society (SAI)
  • 摘要:In this paper we present a graph-based semi-supervised method for solving regression problem. In our method, we first build an adjacent graph on all labeled and unlabeled data, and then incorporate the graph prior with the standard Gaussian process prior to infer the training model and prediction distribution for semi-supervised Gaussian process regression. Additionally, to further boost the learning performance, we employ a feedback algorithm to pick up the helpful prediction of unlabeled data for feeding back and re-training the model iteratively. Furthermore, we extend our semi-supervised method to a clustering regression framework to solve the computational problem of Gaussian process. Experimental results show that our work achieves encouraging results.
  • 关键词:thesai; IJACSA; thesai.org; journal; IJACSA papers; Semi-supervised learning; Graph-Laplacian; Re-gression; Gaussian Process; Feedback; Clustering
国家哲学社会科学文献中心版权所有