出版社:Academy of Economic Studies - Bucharest, Romania
摘要:From its appearance until nowadays, the internet saw a spectacular growth not only in terms of websites number and information volume, but also in terms of the number of visitors. Therefore, the need of an overall analysis regarding both the web sites and the content provided by them was required. Thus, a new branch of research was developed, namely web mining, that aims to discover useful information and knowledge, based not only on the analysis of websites and content, but also on the way in which the users interact with them. The aim of the present paper is to design a database that captures only the relevant data from logs in a way that will allow to store and manage large sets of temporal data with common tools in real time. In our work, we rely on different web sites or website sections with known architecture and we test several hypotheses from the literature in order to extend the framework to sites with unknown or chaotic structure, which are non-transparent in determining the type of visited pages. In doing this, we will start from non-proprietary, preexisting raw server logs.
关键词:Knowledge Management; Web Mining; Data Preprocessing; Decision Trees; Databases