摘要:We present the Concordant-Ranks (CR) strategy that decision makers use to quickly find an alternative that is proximate to an ideal alternative in a multi-attribute decision space. CR implies that decision makers prefer alternatives that exhibit concordant ranks between attribute values and attribute weights. We show that, in situations where the alternatives are equal in multi-attribute utility (MAU), minimization of the weighted Euclidean distance (WED) to an ideal alternative implies the choice of a CR alternative. In two experiments, participants chose among, as well as evaluated, alternatives that were constructed to be equal in MAU. In Experiment 1, four alternatives were designed in such a way that the choice of each alternative would be consistent with one particular choice strategy, one of which was the CR strategy. In Experiment 2, participants were presented with a CR alternative and a number of arbitrary alternatives. In both experiments, participants tended to choose the CR alternative. The CR alternative was on average evaluated as more attractive than other alternatives. In addition, measures of WED, between given alternatives and the ideal alternative, by and large agreed with the preference order for choices and attractiveness evaluations of the different types of alternatives. These findings indicate that both choices and attractiveness evaluations are guided by proximity of alternatives to an ideal alternative.