摘要:Giant ionospheric disturbances induced by the 2011 off the Pacific coast of Tohoku Earthquake ( M w 9.0) on 11 March 2011 are studied by using data from the SuperDARN Hokkaido HF radar and GPS receiver network (GEONET) in Japan.The HF radar observations revealed strong disturbances to the north of Hokkaido that propagated northward at velocities of 6.7–1.8 km/s triggered by northward-propagating seismic surface waves.An induction magnetometer in Hokkaido recorded part of the seismic wave propagation from the epicenter.After the passage of the 6.7–1.8 km/s waves the radar observed northward-propagating disturbances (343–136 m/s) due to atmospheric gravity waves (AGW) perhaps excited near the epicenter.Interestingly, the radar first detected peculiar disturbances with periods of about 2–4 min caused by the acoustic resonance.GEONET, which covers the area on the south of the radar field of view, provided total electron content (TEC) data.Comparisons between radar and TEC observations indicate the following: (1) 6.7–1.8 km/s waves observed with the radar do not always have counterparts in TEC.(2) Acoustic waves of 1.3–0.7 km/s identified in TEC are not observed with the radar.(3) Disturbances caused by both AGW and acoustic resonance are simultaneously discernible in both TEC and radar data. Key words Earthquake ionospheric disturbance Hokkaido radar GPS TEC Rayleigh wave acoustic-gravity wave acoustic resonance.